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Two types of patterns rigidly rotating within a disk of a weakly excitable medium are studied using the
free-boundary approach. The patterns are spots moving along the boundary of the disk and spiral waves
rotating around the disk center. The study reveals a selection mechanism that uniquely determines the shape
and the angular velocity of these patterns as a function of the medium excitability and the disk radius. These
two types of patterns coexist below some critical parameter value, coincide at a bifurcation point, and do not
exist above it. The same selection mechanism is applied to describe a limiting case of a spiral wave rotating in
an unbounded medium.
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I. INTRODUCTION

Wave patterns propagating in excitable media play a very
important role in diverse physical, chemical, or biological
processes. Self-organized formation of wave patterns in ex-
citable media represents a broad and intensively developed
field of study in nonlinear dynamical systems and has poten-
tial applications, e.g., in cardiology �1–4�.

Rigidly rotating spirals, critical fingers, and wave seg-
ments are common moving patterns in weakly excitable two-
dimensional media. Most famous are spiral waves, often
used as a paradigmatic example of the self-organization �3�.
Wave segments are inherently unstable, but they can be eas-
ily stabilized by applying an appropriate feedback to the ex-
citability of the medium �5�. They define a separatrix be-
tween spiral wave behavior and contracting wave segments
�6�. Unbounded wave segments �critical fingers� lie on the
asymptote of this separatrix, defining the boundary between
excitable and subexcitable media �7,8�.

The pattern selection problem has been successfully
solved for critical fingers �7,9� and for wave segments �6�.
The situation with a selection mechanism for spiral waves is
more complicated. The theory describing spiral waves in
highly excitable media is well-developed under the assump-
tion that the spiral wave core is small �10�. However, it fails
to consider the limit of a weak excitability when both the
rotation period and the core size of a spiral wave diverge.
The kinematical theory developed in �4�, especially for the
case of a large core size, assumes boundary conditions,
which cannot be derived rigorously. The asymptotic analysis,
aimed to describe a spiral wave in a weakly excitable me-
dium as a slightly deformed critical finger �9�, is oriented on
the consideration of unbounded media and cannot be applied
to study the role of the medium size, i.e., to describe spiral
waves rotating within a disk.

Thus although spiral waves rotating within a disk have
been obtained in numerical computations and observed in
experiments �11–16�, the corresponding theory is still ill-
elaborated in the limit of weakly excitable media.

In this paper a unified approach is proposed which allows
us first to formulate a pattern selection principle for an exci-
tation spot rotating along the boundary of a disk. Then this
problem is generalized to consider a spiral wave rotating

around the disk center. It is shown that these two solutions
coexist and coincide at a critical value of the excitability. The
selection mechanism for spiral waves rigidly rotating in an
unbounded medium follows from this unified description as
a limiting case of a disk of an infinitely large size. Because
no assumption about the size of the spiral wave core is used,
this approach is applicable to the case of a weakly excitable
medium, up to the critical finger limit.

II. EXCITABLE MEDIA MODEL

Our aim is to reveal a universal selection mechanism for
wave patterns rotating in excitable media with different ki-
netics. The following two-variable reaction-diffusion model
is used as an example of such a medium:

�u

�t
= D�2u + F�u,v� ,

�v
�t

= �G�u,v� , �1�

where the variables u�x ,y , t� and v�x ,y , t� represent, respec-
tively, the activator and the inhibitor in a two-dimensional
medium. Typically ��1, and the activator u is treated as a
fast variable with respect to the slow inhibitor v.

For the functions F�u ,v� and G�u ,v�, we take the
FitzHugh-Nagumo type form used previously �7�:

F�u,v� = 3u − u3 − v ,

G�u,v� = u − � , �2�

with �=−1.6797.
This system has a single uniform resting state �u0 ,v0�

= �� ,3�−�3�. Here u0 is the smallest root of the cubic equa-
tion F�u ,v0�=0. For the given value of �, �v0 � =0.3, that is
small compared with �u0 � ��3.

The resting state is stable with respect to small perturba-
tions. However, a suprathreshold perturbation applied uni-
formly to the whole medium induces a transition to the ex-
cited state �ue ,v0�, where ue is the largest root of the equation
F�u ,v0�=0. During the excited state the inhibitor v slowly
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changes, due to Eq. �1�. After a finite time interval inversely
proportional to �, this change is followed by a jump of the
activator value to the left branch of the nullcline F�u ,v�=0
�1,4,7,12�. Then the medium slowly returns back to the rest-
ing state.

A suprathreshold local perturbation or specific initial con-
ditions induce a propagating excitation wave with a sharp
jump of the activator value between the resting and excited
states. During this jump the value of the slow inhibitor v
remains practically constant, while the activator u makes a
rapid change between u0�−�3 and ue��3. This part of the
propagating wave represents a wave front. The excited state
is followed by a rapid change of the activator in the opposite
direction, from ue to u0. This is the back of the excitation
wave.

III. ROTATING PATTERNS WITHIN A DISK
WITH NO-FLUX BOUNDARY

Free boundary formulation has been used by many au-
thors to study pattern selection in two-dimensional excitable
media �9,10,12,17–20�. This approach reduces the problem
of wave propagation in a reaction-diffusion system to the
kinematics of a sharp interface separating regions of the ex-
cited and resting states of the medium.

The propagation velocity cp of a planar interface is a
monotonically decreasing function of the slow variable v at
the moving boundary layer, vanishing at a value v=v*. If v is
close to v*, the wave velocity is approximated by a linear
function �12�:

cp�v� = ��D�v* − v� . �3�

The coefficients � and v* are uniquely determined by
F�u ,v�. For instance, for the cubic function defined by Eq.
�2�, �=�1/2 and v*=0 �7�.

Obviously, the value of v at the very first excitation front
generated in the medium is equal to the value v0 correspond-
ing to the resting state. Since the rotation period of a pattern
rotating in a weakly excitable medium is large, it is assumed
that the medium has enough time to completely recover to
the resting state during the time interval between two pulses.
Thus one can neglect the refractory properties of the me-
dium, if the rotation period of a pattern is large enough
�1,4,7,12�. Then, in accordance with Eq. �3�, the propagation
velocity of the wave front even for a periodically rotating
pattern is determined by the quantity �=v*−v0 and can be
written as

c0 = ���D . �4�

Figure 1�a� shows an example of a rotating wave pattern in a
two-dimensional medium. This is an excitation spot moving
along the no-flux boundary of a disk. The moving interface
includes segments, where du /dt�0 �wave front� and du /dt
�0 �wave back�. The inner ends of the front and the back
coincide at the so-called phase change point, where du /dt
=0 �21�, while the other ends are pinned to the no-flux
boundary of the disk. It is convenient to parametrize the
shape and the velocity of the spot boundary by the arclength

s, counted from the phase change point, assuming that s
�0 for the points of the back. Let us denote by cn�s� the
normal velocity, by c	�s� the tangential velocity, and by k
=k�s� the local curvature of the boundary. It was shown �4�
that these three functions obey the following system of dif-
ferential equations:

dcn

ds
= 
 + kc	, �5�

dc	

ds
= − kcn, �6�

where 
 is the angular velocity of a rigidly rotating pattern.
It is also known that the normal velocity cn depends on the
local curvature k �4,12�

cn = cp�v� − Dk . �7�

In accordance with Eq. �1�, within the excited region the
slow variable v varies along a circle of radius r as

(a)

(b)

FIG. 1. Two types of wave patterns rotating in a disk of radius
RD=15. �a� Excitation spot moving along the disk boundary with
the angular velocity �=0.049. �b� Spiral wave rotating around the
disk center at �=0.1. The front �thick solid� and the back �thin
solid� of both patterns obey Eqs. �11�–�14� with B=0.3247.
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dv/d� = − �G„ue�v�,v… , �8�

where � is the polar angle.
For ��1, the value G(ue�v� ,v) in this equation remains

practically constant, G*=G(ue�v*� ,v*), and the value of the
slow variable at the wave back reads as

v−�r� = v0 +
G*�



��+�r� − �−�r�� , �9�

where �+ ��−� specifies the location of the front �back� of the
spot. The substitution of this expression into Eqs. �3� and �7�
yields the velocity of the back

cn
−�r� = c0 −

G*���D



��+�r� − �−�r�� − Dk−�r� . �10�

After rescaling �S=sc0 /D, R=rc0 /D, C=c /c0, K=Dk /c0,
and �=
D /c0

2� Eqs. �5�–�7� and �10�, transform into the
dimensionless form

dCn

dS
= � + KC	, �11�

dC	

dS
= − KCn, �12�

Cn
+ = 1 − K+, �13�

Cn
−�R� = 1 −

B

�
��+�R� − �−�R�� − K−�R� , �14�

where

B =
G*�

�2�3 . �15�

The dimensionless parameter B characterizes the excit-
ability of the medium, like it does in the case of a critical
finger �7� or a wave segment �6�. In particular, an undamped
propagation of an excitation wave in a two-dimensional me-
dium is possible only if B�Bc�0.535 �7�. In a weakly ex-
citable medium the parameter B should be close to Bc. Our
aim now is to demonstrate that this parameter uniquely de-
termines the angular velocity and the shape of a rotating
spot.

Let KDR be the curvature of the front and SDR
+ be the

arclength of the front at the disk boundary. Then the normal
velocity of the front at the boundary is determined by Eq.
�13� as Cn

+�SDR
+ �=1−KDR. Since the front is orthogonal to the

no-flux boundary of the disk, the angular velocity � is given
by the simple expression

� = �1 − KDR�/RD, �16�

where RD is the disk radius. In addition, the tangential veloc-
ity of the front has to be zero at the disk boundary due to the
orthogonality. Thus in order to determine the front shape we
need to integrate the system �11�–�13� with � specified by
Eq. �16� and with the following initial conditions:

K+�SDR
+ � = KDR, C	�SDR

+ � = 0. �17�

Integration of the system �11�–�13� in the reverse arclength
direction uniquely determines the shape of the front for given
KDR�0. This integration has to be carried out until the phase
change point, where Cn

+ vanishes. This procedure determines
the Cartesian and polar coordinates of the front and the tan-
gential velocity of the phase change point C	�0�=Ct.

These data are necessary to integrate Eqs. �11�, �12�, and
�14� for the spot back with � determined by Eq. �16�. The
initial conditions for this integration are

K−�0� = 1, C	�0� = Ct. �18�

These initial conditions completely determine the solution,
which will, however, depend on the parameter B. Using a
trial and error method one must vary the value of B until the
corresponding solution satisfies another boundary condition

C	�SDR
− � = 0. �19�

Repetition of these computations for different KDR and RD
yields the dependence B=BPS�RD ,KDR�. Note that since the
angular velocity � is also a function of RD and KDR, due to
Eq. �16�, these computations specify the dependence �
=�PS�B ,RD�. Figure 2 shows this dependence computed for
two disk radii RD=8 and 24.

Rotating wave patterns in a form of a spot moving along
the no-flux boundary of a disk have been unknown before
this study. They are intrinsically unstable and can be ob-
served in excitable media only under a stabilizing feedback,
similarly to the wave segments �6�. Obviously, the rotating
spots are transforming into the wave segments in the limit
RD→. The free-boundary approach creates the opportunity
to determine the shape of a spot, as illustrated by Fig. 1�a�,
and its angular velocity, which is an increasing function of
the parameter B, as shown in Fig. 2.

FIG. 2. Angular velocity of a spot �thin dotted lines� and of a
spiral wave �thick dotted lines� obtained as a solution of the free-
boundary problem for two different disk radii RD=8 and 24. The
thin solid line shows angular velocity of an unbounded spiral. The
prediction following from Eqs. �25� and �26� is shown by a dashed
line. Separate stars show results of direct integrations of the models
�1� and �2�.
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Another type of pattern rotating within a disk is a spiral
wave, as illustrated in Fig. 1�b�. This pattern is computed for
a disk of the same size, as in Fig. 1�a�, and the excitability of
the medium is the same. The wave is rotating at a higher
angular velocity than the spot velocity and the arclength of
the front is considerably larger. Moreover, there are two
points at the front, where the tangential velocity C	 vanishes.
One point is located at the disk boundary, like in the case of
a spot. However, the front curvature at this point is negative
K+�SDR

+ ��0 in contrast to the spot front shown in Fig. 1�a�.
Due to this, there is some inner point of the front, point Q,
where the tangential velocity vanishes. Here the normal ve-
locity is orthogonal to the radial direction, and this point
describes a closed pathway centered at the disk center �4,13�.

Let KQ be the front curvature at the point Q. To determine
the shape of the outer part of the front, from point Q until the
disk boundary, the system �11�–�13�, has to be integrated
assuming that at the point Q

K+�SQ� = KQ, C	�SQ� = 0. �20�

The solution obtained will depend on the value of the angu-
lar velocity �. Using a trial and error method one must vary
the value of � until the corresponding solution satisfies an-
other condition at the disk boundary:

C	�SDR
+ � = 0. �21�

The next step is to find out the inner part of the front. To this
aim, in analogy to a rotating spot, we start the integration of
the system �11�–�13� with the boundary conditions

K+�SQ� = KQ, C	�SQ� = 0, �22�

taking into account that � was already determined during the
previous step. The integration has to be carried out in the
reverse arclength direction until the phase change point,
where Cn

+=0. As a result, the shape of the front and the
tangential velocity of the phase change point Ct are deter-
mined by the given RD and 0�KQ�1.

The data obtained have to be used to integrate the system
�11�, �12�, and �14� for the spiral wave back with � deter-
mined for the outer part of the front. The initial conditions
for this integration are given by Eq. �18�. They completely
determine the solution, which will depend only on the pa-
rameter B. Using a trial and error method one must vary the
value of B until the corresponding solution satisfies another
boundary condition �19�. Repetition of this process for dif-
ferent KQ and RD yields the dependence B=BRS�RD ,KQ�.
Since the angular velocity � is also a function of these two
arguments, the proposed method allows us to specify the
dependence �=�RS�B ,RD�. Figure 2 shows this dependence
computed for two different disk radii.

It is clearly seen in Fig. 2 that the angular velocity � of a
spiral is a monotonically decreasing function of the param-
eter B, in contrast to the increasing angular velocity of a spot.
These two solutions coexist below some critical value of B,
as illustrated in Fig. 1, coincide at this critical point, and do
not exist above this critical value. As it was mentioned
above, the curvature of the spot front near the disk boundary
is positive, while the curvature of the spiral front is negative
here. At the critical value of B both curvatures vanish.

Hence, due to Eq. �16�, both angular velocities approach �
=1/RD at the critical point, as can be seen in Fig. 2.

The relationship between the angular velocity � and the
radius of a disk is illustrated in Fig. 3�a�. For a rotating spot
this relationship looks rather trivial. Since we are dealing
with a weakly excitable medium, the curvature of the spot
front near the disk boundary remains rather small. Relation
�16� predicts in this case a linear increase of the angular
velocity. Approximately such a linear increase can be seen in
Fig. 3�a�.

The similar dependence for a spiral wave is more compli-
cated and includes three characteristic regions. Until the disk
radius is sufficiently large the angular velocity of a spiral
wave and the curvature KQ are not influenced by the disk
size. Due to Eq. �16�, within this range of RD the curvature
KDR can be approximated as KDR=−�0RD, where �0 is the
angular velocity in the limit RD→. Within the next range
of RD the curvature KDR remains negative, but its absolute
value becomes rather small. The angular velocity is approxi-
mately proportional to 1/RD here, and the curvature KQ de-
creases with 1/RD. Near some critical value of RD the mo-
notonous increase of � abruptly stops. At the spiral-spot
bifurcation point both curvatures KDR and KQ vanish and the
angular velocity of a spiral wave coincides with the angular

(b)

(a)

FIG. 3. Parameters of the rotating patterns vs the inverse disk
radius, obtained as a solution of the free-boundary problem for two
different values: the excitability B=0.388 and 0.433. �a� Angular
velocity of a spot �thin dotted lines� and of a spiral wave �thick
dotted lines�. The relationship �16� with KDR=0 is shown by a
dashed line. �b� The curvature of the spot front KDR near the disk
boundary �thin dotted lines� and the front curvature KQ at the point
Q of the spiral front �thick dotted lines�.
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velocity of a spot. Expression �16� with KDR=0 should be
valid at all bifurcation points independently of the parameter
B. This statement is verified in Fig. 3�a�, where the relation
�16� is depicted by a dashed line.

Note that the monotonous increase of the angular velocity
of a spiral with the inverse disk size has been explained
earlier in the framework of a kinematical theory �13�. How-
ever, this theory has been based on the wrong assumption
that the curvature KQ at the point Q is a characteristic of the
medium and does not depend on the disk radius. Figure 3�b�
shows that KQ depends on the disk size and vanishes at the
spiral-spot bifurcation point. Thus the free-boundary ap-
proach explains why a stationary rotating spiral wave can be
observed only in a disk of a sufficiently large size. The ex-
istence of such a restriction has been experimentally ob-
served earlier �16�.

IV. SPIRAL WAVES IN AN UNBOUNDED MEDIUM

It is well-known that the influence of the disk boundary
on a rotating spiral wave decreases very rapidly with the disk
radius �13,14�. In the majority of the experimental studies the
medium size is rather large and spiral waves are moving as
unbounded spirals. Therefore a generalization of the previous
analysis to the case of an infinitely large disk size is very
important.

The corresponding consideration is rather similar to the
one used for a spiral within a disk of a finite size. First, one
should determine the outer part of the front and its angular
velocity � for a given value KQ. The selected solution has to
satisfy the boundary conditions �20� and the condition �21�
should be change to

Cn
+�� = 1. �23�

The next step is to determine the inner part of the front, in
particular the velocity Ct of the phase change point. After
this, starting with the conditions �18� and using a trial and
error method, one must find out the value of B corresponding
to the solution satisfying the boundary condition

Cn
−�−  � = 1. �24�

Repetition of this process for different KQ yields the depen-
dence B=BS�KQ�. Since the angular velocity � is also a
function of KQ, we get the relationship �=�S�B�, which is
shown in Fig. 2. This monotonically decreasing function
vanishes at B=Bc�0.535 and a spiral wave degenerates here
into a critical finger. The dependencies �=�RS�B ,RD�, ob-
tained for spirals rotating within two disks of different radii,
approach this relationship, when B is small enough or RD
becomes larger.

As well as in the case of a disk, the curvature KQ is an
important intermediate parameter of the free-boundary prob-
lem. The selected values of KQ are shown in Fig. 4�a�. It
turns out that within the range 0�Bc−B�0.25 the curvature
KQ can be approximated with an accuracy of 5% as

KQ = 0.691�B + 0.6��B�3/2 + 8.5��B�3 + 48.0��B�5,

�25�

where �B=Bc−B. The linear term of this strongly nonlinear
relationship coincides with an asymptotic derived in �9� for
�B�1 and provides an accuracy of about 10% only within a
narrow region �B�0.02.

An analytical expression for the angular velocity of an
unbounded spiral as a function of KQ has been derived earlier
�4�,

� = 0.685KQ
3/2 − 0.06KQ

2 − 0.293KQ
3 . �26�

Therefore Eqs. �25� and �26� provide an analytical prediction
for the angular velocity of an unbounded spiral, which is
shown by a dashed line in Fig. 2.

The tip velocity Ct is another intermediate parameter of
the free-boundary problem. The selected values of Ct are
shown in Fig. 4�b�. The data obtained for an unbounded spi-
ral determine a unique relationship between Ct and the se-
lected value of the angular velocity �, which can be approxi-
mated as

(a)

(b)

FIG. 4. Front curvature KQ �a� and the tangential velocity Ct �b�
obtained as a solution of the free-boundary problem for an un-
bounded spiral �thick solid�. Corresponding values obtained for two
different disk radii RD are shown by thick dotted lines. Thin dotted
lines depict the velocity Ct computed for spots circulating along the
no-flux boundary of the disks. The predictions following from Eqs.
�25� and �28� are shown by dashed lines. Separate stars depict re-
sults of direct integrations of the models �1� and �2�.
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� = 0.198�1 − Ct�3/2 + 0.133�1 − Ct�2. �27�

The first term in this approximation coincides with an
asymptotic derived in �9�, which is valid for Ct�1. The ap-
proximation �27� provides a nice accuracy within the whole
range 0�Ct�1.

It is important to stress that in the case of a stabilized
wave segment the tip velocity is a linear function of the
parameter B �6�, shown by a thin dotted straight line in Fig.
4�b�. One can see that the tip velocity is close to this
asymptotic for B�Bc, but strongly deviates from this linear
relationship, when B becomes smaller. It was found out that
the observed relationship can be expressed with a high accu-
racy as

Ct = 1 − �Bc − B�/0.63 − 1.47� . �28�

This approximation is valid not only for an unbounded spi-
ral, but as well for spiral waves within a disk. Since a stabi-
lized wave segment undergoes a translational motion with
�=0, this expression can be used in this case, too.

To obtain an explicit expression specifying the tip veloc-
ity Ct of an unbounded spiral for a given parameter B, Eq.
�27� can be substituted into Eq. �28� that gives

Cd − 0.291Cd
3/2 − 0.195Cd

2 = �Bc − B�/0.63, �29�

where Cd=1−Ct.
Thus the angular velocity � of an unbounded spiral, tan-

gential velocity of its tip Ct and the curvature KQ at the point
Q of its front are uniquely determined by the parameter B,
which characterizes the medium excitability. Note that this
value can be expressed through the measurable characteris-
tics of the wave patterns, namely, the propagation velocity of
a planar wave, c0, and the duration of the activator pulse, du.
To this aim, Eq. �10� should be considered in a region far
away from the rotation center, where the front curvature is
negligibly small and cn

−=−c0. Then the time interval between
the front and the back of the activator pulse reads

du =
�+�r� − �−�r�



=

2�

G*�
. �30�

Substitution of this expression into Eq. �15� yields

B =
2D

c0
2du

. �31�

To obtain this expression, only the structure of the model �1�
is used independently on the details of the nonlinear kinetics
specified by Eq. �2�. That gives an opportunity to extrapolate
the results of the above study to other types of excitable
kinetics.

To verify the theoretical predictions obtained from the
solution of the free-boundary problem, we performed direct
integrations of Eqs. �1� and �2� with D=1. To reduce the
medium refractoriness we took �= �̄, then G�u ,v��0, and
�=k��̄, then G�u ,v��0, assuming k��1 �22�. After this
modification the refractory period of the medium becomes
negligibly small with respect to the rotation period of an
unbounded spiral. Namely this situation was assumed
throughout the free-boundary consideration performed

above. The explicit Euler integration method is used with
discrete steps in time �t=0.02 and in space �x=0.3. In all
computations a spiral wave is created by a special choice of
the initial conditions on a mesh consisting of 500�500
nodes �for details see �8��. This mesh size is so large that the
influence of the boundary can be neglected, and the resulting
rotating patterns can be treated as unbounded spiral waves.
The computational mesh is comoving with the spiral wave
core in such a way that the spiral wave tip was always lo-
cated at the mesh center. It allow us to compute spiral waves
with extremely large core size.

Varying �̄ in the range 0.001��̄�0.002 and taking k�

=400, the values of the angular velocity of unbounded spi-
rals are computed and shown in Fig. 2 by separate stars. The
computed values of the tip velocity are depicted in Fig. 4�b�.
It can be seen that the numerical data obtained are in a good
quantitative agreement with the theoretical predictions.
These values uniquely determine all essential characteristics
of the spiral wave shape. For instance, the radius of the spital
tip trajectory, Rq=Ct /�, and the spiral wave pitch, �
=2� /�, are also predicted with a high accuracy. Small de-
viations of the numerical data from the theoretical predic-
tions are due to some approximations that are used, e.g., a
vanishing thickness of the interface between the resting and
excited states and the linear relations �3� and �7� for the
propagation velocity.

V. CONCLUSION

The free-boundary approach applied for patterns rotating
in excitable media reveals the main selection mechanism
based on an interaction between the front and the back of a
rotating wave pattern. The discovered selection mechanism
is not based on a dispersion relation for a wave train, as it
was assumed in �12�. The dispersion relation was neglected
in the presented consideration, but unique values of the ro-
tation velocity and the spiral shape are still selected for a
given medium excitability. The existence of a similar kind of
a selection mechanism has been demonstrated numerically in
Ref. �19�. A corresponding analytical consideration has been
performed for the case of a critical finger in Ref. �7�, where
the crucial role of the parameter B was demonstrated. Later
this consideration has been generalized to describe the case
of an unbounded spiral wave �9�.

However, our computations demonstrate that the
asymptotic found in �9� is valid only in a close vicinity of the
critical value Bc of the medium excitability and this
asymptotic cannot be applied to study wave patterns rotating
within a disk of a finite size.

In this paper the solution of the free-boundary problem
has been solved numerically for the first time for wave pat-
terns rigidly rotating within a disk of an arbitrary radius. The
existence of an unknown wave pattern has been demon-
strated, that is a spot rotating along the boundary of a disk.
We have found that spots and spiral waves rotating within a
disk represent coexisting solutions bifurcating from a critical
point. Rotating spots are unstable, but can be stabilized by
the application of a feedback to the medium excitability, in
analogy to the stabilization of the wave segments �5,6�.
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We have shown that the curvature of the spiral front at the
point Q is an intermediate parameter of the free-boundary
problem, rather than an independent characteristic of the me-
dium, as it was assumed earlier �4,13�. In particular, for ro-
tating spiral waves KQ depends on the disk radius and van-
ishes at the spiral-spot bifurcation point, as can be seen in
Fig. 4�b�.

We note that the solutions of the free-boundary problem
obtained in a dimensionless form are universal. They can
easily be applied to any weakly excitable media, as for this
aim only the general characteristics of a two-component
model should be known. The solutions computed numeri-
cally in a broad range of the medium parameters are also
very important for the development of any kind of analytical
predictions. For instance, they are in perfect agreement with
the limiting case of the critical finger �7�, with the descrip-

tion of the translating motion of the wave segments �6� and
with asymptotic analysis of the unbounded spirals �9�.
Analysis of the solutions obtained gives the opportunity to
evaluate the accuracy of the proposed asymptotics.

The developed approach can be generalized to consider
the role of the medium refractoriness, like it was done in
�4,9,12,19�, but that goes beyond the aim of this paper.
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